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Abstract. We study the effects of time-dependent thermal cycling on the first-order phase
transition in cubic Ising systems with four-spin interactions by means of Monte Carlo simulations.
The thermal hysteresis or the energy dissipationQ of a thermal cycle can be scaled with respect
to the linear heating or cooling rateR: Q−Q0 ∝ Rb. We find the exponentb is independent
of the interaction strength.b = 0.47± 0.05 in an SC lattice while in an FCC lattice and a
compressible Ising latticeb = 0.71± 0.07, 0.70± 0.05 respectively. These simulation results
are also compared with the kinetic Ising model andN -vector model in Langevin dynamics.

1. Introduction

In experiments, hysteresis always characterizes a first-order phase transition (FOPT). We can
distinguish between hysteresis in two categories. In the first case, there is an equilibrium
temperature at which the phase transition takes place, but practically, due to the finite
observation time, the order parameter will show hysteretic jumps above and below the
transition temperature. This phenomenon reflects the superheating and supercooling, and
it is known that the irreversibility is based on the ‘ergodic breaking’. In the second case,
however, the transition occurs at some spinodal points: it is at these temperatures that the
free-energy barrier separating two phases will vanish. The system enters the ‘metastable’
state prior to its reaching the spinodal points. Recently, scaling of the hysteresis during a
first-order phase transition has been of great interest. The simplest case is the field-driven
FOPT in magnetic systems [1, 2]. It has been found by some researchers that the magnetic
hysteresis can be scaled by the sweeping rate of the external magnetic field [1–5]. The area
of hysteresis loop in the conjugate coordinate, i.e., in theM–H frame, indicates the energy
loss or energy dissipation during the FOPT. Therefore, the energy dissipation may result,
at least to some extent, from the non-equilibrium relaxation of the order parameter of the
system under the action of the external driving field.

We now develop this concept of scaling to the thermally driven first-order phase
transition. In the time-dependent heating and cooling process, because of the non-
equilibrium relaxation of the internal energy (or entropy), the energy dissipation in a thermal
cycle may be affected by the feature of thermal cycles, i.e. the starting or the ending
temperature points, the amplitude of the temperature oscillation or the rate of variation.
Rao and Pandit [4] studied the scaling of the thermal hysteresis for the first time. In their
preliminary phenomenological study, they investigated theN -vector model ((82)3 model)
by using the time-dependent Ginzburg–Landau theory in the large-N limit: they obtained
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the scaling expressionA ∝ r1.0, whereA was the area enclosed by theM–T curve during
a thermal cycle andr was the amplitude of the sinusoidal temperature oscillation. In
this method, there are two problems they might encounter. Firstly, the amplitude of the
temperature oscillation scanning across the transition temperature is small; the paramagnetic
phase has not been transformed to a stable ferromagnetic phase and thereafter the spin system
is forced to heat to the paramagnetic state. This can bring dramatically history-dependent
effects into the phase transition. Secondly, the hysteresis loop area of theM–T curve cannot
give the value of energy dissipation during a thermal cycle, which can be easily measured
by thermal analysis, e.g., by comparing the DSC measurement of the heat loss and heat
absorption during cooling and heating processes.

In order to give a deep insight into this problem, we adopt some Ising models that can
show first-order phase transitions by considering the multi-spin interaction. By means of
Monte Carlo (MC) simulations, it is possible to study the non-equilibrium aspects of the
FOPT in relation to the changes in the thermodynamic conditions. We can quantitatively
investigate the relationship between the energy dissipation and the characteristic of the
thermal cycle, which can be easily controlled by the Monte Carlo algorithm. In our MC
studies, we change the temperature linearly rather than periodically, and the amplitude of
thermal sweeping is large enough to ensure the completion of the first-order phase transition,
this method of temperature variation is often used by DSC measurements.

2. Models and Monte Carlo simulations

2.1. Ising systems with four-spin interaction

The Ising models with multi-spin interactions were first proposed by Baxter and Wu [6].
In three-dimensional space, the model might show first-order phase transition if four-spin
interactions are taken into account [7, 8]. IfN spins are placed on the cubic lattice,
the Hamiltonian of this type consists of a linear combination of two- and four-spin Ising
interactions as follows:

H = −J2

∑
〈i,j〉

SiSj − J4

∑
{i,j,k,l}

SiSjSkSl − h
∑
i

Si . (1)

Here h is the applied magnetic field,J2, J4 > 0 are the interaction strengths,Si = ±1.
〈〉 indicates the sum extending over the nearest-neighbour spins, and{ } denotes the sum
including the spins inside the basic quartets; the basic quartet is defined as an elementary
simplex in the cubic lattice. The definitions of the quartets in three cubic lattices (sc, bcc,
fcc lattices) are given in [9], and we will use these definitions as references.

Another Ising model with four-spin interactions that is well known for showing an
FOPT is the so-called compressible Ising model. The Hamiltonian can be written as

H = −J2

∑
〈i,j〉

SiSj − (J4/N)
∑
〈i,j〉〈k,l〉

SiSjSkSl − h
∑
i

Si . (2)

Here the Hamiltonian differs from (1) only in that〈i, j〉 and 〈k, l〉, which represent every
nearest-neighbour pair, are not restricted to form an elementary simplex in the cubic lattice.
Their interactions are long ranged.

As indicated by renormalization group analysis [10] and MC simulations [9], the spin
systems in cubic lattices governed by Hamiltonian (1) show first-order transitions ifJ2 = 0;
and they might cross over from first order to second order with decreasing ratioJ4/J2.
Furthermore, due to the degeneration of the order states, the systems with pure four-spin
interaction will characterizen-component vector models; the order-parameter dimensionality
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Figure 1. Thermal hysteresis of internal energy at various temperature variation rates in FCC
lattice. Ṫ = 1T/1t is indicated by1t from inner to outer loops. First-order phase transitions
at differentJ4 are shown.kB1T/J2 = 0.05.

for body-centred cubic, simple cubic and face-centred cubic systems aren = 4, 8 and∞
respectively. In the compressible Ising model [15], there is an FOPT ifJ4 6= 0. Hence the
models considered here show a definite FOPT and will give us a convenient way to compare
the kinetic phenomenological model and computer experiments. These lead to theoretical
insight into the subject we proposed.

2.2. Monte Carlo study

Monte Carlo simulations of hysteresis in FOPTs in spin systems described by Hamiltonians
(1) and (2) without the magnetic field are carried out in the conventional way of Metropolis
important sampling. The procedure is a simulated heating and cooling method, in which the
temperature is increased or decreased with the same interval1T . At each temperature the
simulations are performed for the same time1t . The time scale of simulations is given in
units of Monte Carlo steps per spin (MCS/spin), corresponding to one lattice spin update.
In this simulated annealing method, linear temperature variation is achieved by using the
small temperature changes1T and a relatively small number of MC steps. Therefore the
heating or cooling rate can be measured byṪ = 1T/1t . We want to stress that because
it is our intention to focus on the effects of time-dependent thermal cycling, we should not
consider rather long MC running times. However, a long-time Monte Carlo algorithm is
needed for this subject, especially for determining the static hysteresis and the initial spin
configuration of annealing.

The spin numbers in all the cubic lattices we study are more thanN = 153, and they
are all subjected to the periodic boundary conditions with toroidal type. We performed the
simulations for some systems of different sizes: no finite-size effects were ever found.
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Figure 2. Thermal hysteresis of normalized internal energy at various temperature variation
rates in SC lattice.kB1T/J2 = 0.05. E0 is the ground state energy.

In the increasing-temperature series, the simulation is started with all the spins setting
in the same direction, at a low temperatureT1. In the subsequent constant-temperature
(T = Ti) simulation, which in all cases lasts1t (MCS/spin), the simulation is started from
the spin configuration obtained from the preceding simulation at temperatureT = Ti −1T .
The simulation is ended at temperatureT2 after the phase transition is terminated. In the
decreasing-temperature series, however, there are two kinds of spin configurations with
which we can start the simulation. One is the configuration where the spins are chosen
randomly, which is the paramagnetic state at infinite temperature; the other is the spin
configuration atT = T2, which has been obtained from very slow heating (i.e.,1t > 104).
Although the first one is realistic, it must be started at a finite temperature: the error is
enormous in the fast annealing process. Therefore we use the configuration atT = T2;
furthermore, the temperature is held for a long time:tan > 105 (MCS/spin). We have
checked in our MC studies that no initial-temperature effect is encountered, except in the
pure four-spin interaction case (J2 = 0), therefore we will avoid this situation.

The magnetization and internal energy per spin of the systems can be calculated from
the following expression:

M =
[〈∑

i

Si

〉]
av

/
N E = [〈H 〉]av/N. (3)

At eachT , 〈 〉 denotes the thermal average over the last half MC run. The thermal cycles
will be repeated two to ten times and the average is denoted by [ ]av. The entropy, relative
to that atT = ∞, can be numerically calculated from the internal energy:

S(T ) = E(T )/T −
∫ 1/T

0
E(T ′) d(1/T ′). (4)
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Figure 3. Thermal hysteresis of normalized internal energy at various temperature variation
rates in simple cubic compressible Ising lattice.kB1T/J2 = 0.05.

Therefore the energy dissipation per thermal cycle is

Q =
∮
T dS. (5)

2.3. Results

2.3.1. Thermal hysteresis at different thermal cycle rate.MC simulation for Hamiltonian
(1) is firstly done in a very slow thermal cycle. The results are compared with those of the
static cases given by Mouritsenet al [8, 9]. Although in their simulation the MC steps for
some temperatures were dramatically different, especially inside and outside the transition
regions, we find our results are analogous to theirs in FCC and SC lattices.

In a face-centred cubic lattice, the number of spinsN = 203. The temperature interval is
set to bekB1T/J2 = 0.05. For a given value ofJ4, the heating or cooling rateṡT = 1T/1t
are measured by MC steps1t . Because the lifetime of the metastable state is very long,
static hysteresis might not be readily obtained even when the temperature variation rate is as
small asṪ = 1T/104 (MCS). In order to obtain reasonable thermal hysteresis, the holding
time at T2 must be as long astan = 106 (MCS/spin). The variations of internal energy
with temperature at various rates are given in figure 1, for different four-spin interaction
strengths.

The thermal hysteresis curves for the simple cubic lattice are shown in figure 2. We
also simulate the BCC lattice with symmetry-breaking field. Up to a system size of 2×203,
the fluctuation is so strong that it seems impossible to obtain hysteresis with satisfactory
statistical error. Therefore we do not include these MC data.

The same procedure is done for simulating the compressible Ising model in an SC
lattice. Figure 3 shows the hysteresis in this spin system.
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Figure 4. Scaling of energy dissipation with respect to the temperature variation rates in all the
cubic lattices with four-spin interactions, at different interaction strengths.Q0 is static energy
dissipation determined by long-time MC simulations. The calculation errors larger than symbol
size are indicated by error bars.

2.3.2. Scaling of the thermal hysteresis.The energy dissipation per thermal cycle between
T1 andT2 can be numerically calculated from equations (4) and (5) at different temperature
variation rates, at a fixed value ofJ4. The results are shown in figure 4. The energy
dissipation per cycle can be scaled as

Q = Q0+ a(Ṫ )β . (6)

Q0 is the static energy dissipation of this first-order phase transition, andβ is a exponent
independent ofJ4, within statistical error. We obtain the exponents for SC and FCC lattices
β = 0.47± 0.05 and 0.71± 0.07 respectively.

In the compressible Ising lattice, we have the exponentβ = 0.70± 0.05; it is also
independent ofJ4.

3. Dynamical approach to hysteresis scaling of FOPT

3.1. Kinetic Ising model

In the Glauber type single-spin flip dynamics, the kinetics of a spinSi is governed by the
master equation. In the Glauber stochastic, it can be written as the following equation in
Si [11]:

d

dt
〈Si〉 = −〈Si〉 + 〈tanh(Ei/kBT )〉 Ei = J2

∑
j

Sj + J4

∑
j,k,l

SjSkSl +H. (7)
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Figure 5. Variation of entropy difference with temperature at different thermal cycle ratesR

(from inner to outer loops), determined by kinetic Ising model.

Under the mean-field approximation (MFA), the uniform magnetizationM = 〈Si〉 is
independent ofi. Therefore we have the equation forM(t):

dM(t)

dt
= −M(t)+ tanh[(M + αM3+H)/T ]. (8)

HereH andT are dimensionless in units ofpJ2 andpJ2/kB respectively;p is the number
of nearest-neighbour sites;α = qJ4/(pJ2) with q the number of basic quartets in cubic
lattices. For SC, BCC and FCC lattices,p = 6, 8 and 12;q = 32, 24 and 8 respectively.
In the compressible Ising model,α = 4J4/(pJ2).

Equation (8) is solved numerically using fourth and fifth Runge–Kutta formulas, and
here we do not discard the magnetic field term, for it is essential for the transition curve on
the cooling process. The temperature is varied linearly asT = T2− Ṫ t or T = T1+ Ṫ t . T1

andT2 are well away from the transition temperature, which can be predicted by the MFA
[12].

In order to obtain the energy dissipation as in equation (5), we must calculate the
entropy fromM(T ). The entropy of the spin systems isS = kB ln(W), whereW is
the number of spin configurations. Because of the uniform magnetization of the systems
M = 〈Si〉 = (1/N)

∑
Si , we may obtain the relation between the entropy (measured from

ground state) and the magnetization, for all the cubic lattices we considered:

1S = 1
2kB [(1+M) ln(1+M)+ (1−M) ln(1−M)]. (9)

The variations of the entropy difference with temperature at different temperature variation
rates are shown in figure 5. The numerical results are independent ofT1 and T2. In
figure 5, the static transition curve was obtained from equation (8) by setting the left side to
zero. According to equation (5), the hysteresis loop area of1S–T curves gives the energy
dissipationQ per thermal cycle. We notice that at small temperature variation rate, the
transitions at increasing and decreasing temperature approach the spinodal points, andQ
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Figure 6. Scaling of energy dissipation at different model parameters:Q0 is determined from
static hysteresis. Solid lines are results of fitting to kinetic Ising model, dashed lines are results
of fitting to large-N model.

tends to the static energy dissipationQ0. Figure 6 shows the difference betweenQ and
Q0 at various temperature variation rates. It is obvious that the energy dissipation obeys
the scaling law (6). The scaling exponentβ = 2/3, independent of the applied field and
interaction strength. However, if we scale the hysteresis loop area ofM–T curves with
respect to the varying rate, there is no definite value ofβ, though the discrepancy is not
very large.

3.2. Langevin dynamics inN -vector model

Let us consider a system described byN -component order parameterΦ = {8α(r, t)},
α = 1, . . . , N ; the Ginzburg–Landau free energy functional of the system can be written as

F [Φ] =
∫

ddx

[
1

2
c
∑
α

(∇8α)
2+ U(Φ)

]
. (10)

HereU(Φ) = (r/2)Φ2 + (u/4N)(Φ2)2 + (v/6N2)(Φ2)3 − N1/2H · Φ. The evolution of
the order parameter can be given by the Langevin equation (LE):

∂t8α(r, t) = − δF [Φ]

δ8α(r, t)
+ 0α(r, t). (11)

0 is the noise and obeys the fluctuation–dissipation theorem:

〈0α(x, t)〉 = 0 〈0α(r, t)0β(r ′, t ′)〉 = 2kBT δαβδ(r − r ′)δ(t − t ′). (12)

In large-N limit, LE (11) transforms to the following closed set of equations and can be
solved exactly [16, 4]:

dM(t)

dt
= 1

2(ζ(t)M(t)+H)
∂C(k, t)

∂t
= 1− [k2− ζ(t)]C(k, t) (13)
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Figure 7. Numerical results of equation (13) at different temperature varying ratesR (from
inner to outer loops). The inset shows the corresponding structure factors.

with ζ = −(r + us + vs2 + uM2 + 2vsM2 + vM4), s(t) = KD
∫ 1

0 k
d−1C(k, t)dk, where

C(k, t) is the Fourier transform of the transverse correlation function.KD is proportional
to the surface area of the unit hypersphere ind-dimensional space [1];r ∝ T − T0, T0 the
critical temperature andu, v are coefficients that result in the FOPT. The detailed numerical
method for solving equation (13) at dimensionalityd = 3 is analogous to those mentioned
in the above section.

The energy dissipation can be calculated in equation (5) by using the following
relationship:S(t) ∝ 〈Φ〉2 + 〈Φ2〉 + a0 = M2(t) + s(t) + a0. Here we define equilibrium
entropyS = ∂〈F [Φ]〉/∂(kBT ). s = 〈Φ(k, t)Φ(−k, t)〉 is the structure factor defined in
equation (13) anda0 is constant. Figure 7 is the numerical results ofM2(t) and s(t). We
also obtain the scaling expression (6) with the exponentβ = 2/3, as shown in figure 6.

4. Discussion and conclusions

In the above two sections, we demonstrated that the energy dissipation during first-order
phase transitions in Ising systems with four-spin interactions could be scaled with respect to
the thermal cycle rates; the scaling law was universal for these spin systems in cubic lattices.
In our MC studies, we found the exponents were nearly the same in the FCC lattice with
local four-spin interactions and the compressible Ising lattice, while they were obviously
different from that in the SC lattice with local four-spin interactions:β = 0.47±0.05. Using
Glauber dynamics and Langevin dynamics for theN -vector model in the large-N limit, we
obtained the exponent 2/3. This confirmed the scaling exponents for the compressible Ising
lattice and FCC lattice with local four-spin interactions, but was not valid for predicting
the exponent for SC lattices with local four-spin interactions. This might be due to the
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strongly fluctuating nature of SC and BCC systems [9, 13, 14], which was suppressed in
other systems we had studied and was neglected in the MFA.

In this concept of scaling and universal curves, we scaled the hysteresis loop area ofS–
T curves, rather than that of theM–T curves. Therefore, the quantities we considered
represented the energy dissipation during the first-order phase transitions. Unlike the
temperature variation methods in [4], in which the temperature was changed as a cosine
function, we decreased and increased the temperature linearly, and the spin systems were
well defined as paramagnetic and ferromagnetic states at the low- and high-temperature
cycle ends respectively. There were some advantages in using such a temperature variation
method. Firstly, the energy dissipation was independent of the initial temperature, therefore
we could focus on the effects of cycle rates. Secondly, linear temperature variation is
usually used in experiment, especially in DSC measurement, in which thermal dissipation
could be accurately measured.

To classify the Ising models we considered here in field theory language, we can describe
the systems with pure four-spin interaction asN -component vector models, and construct
the Landau–Ginzburg–Wilson free-energy functional. Because of the fluctuations of each
parameter component and the couples among them, equations (8) and (13) are not valid
to describe the nonequilibrium kinetics of such models. This may result in a scaling
exponent different from 2/3. This issue deserves to be further studied, experimentally
and theoretically.
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